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Purpose of review

This review examines the current status of
accommodation restoration concepts with reference to
the recent, published peer-reviewed literature with an
emphasis on physiological aspects of accommodation and
presbyopia.

Recent findings

The mechanisms of accommodation and the causes of
presbyopia are described. The physiological amenability of
the accommodative structures in the presbyopic eye to
accommodation restoration is discussed. General
theoretical concepts of accommodation restoration are
introduced. The methods that have been used to assess
accommodation restoration, including the use of animal
models, drug stimulated accommodation, subjective near-
vision tests and objective measurements, are reviewed.
Summary

While physiological and clinical evidence supports the
notion that accommodation can be restored to the
presbyopic eye, progress in this potentially exciting area is
hindered by the scarcity of good, large-scale clinical
studies using objective measurement techniques to
evaluate the outcomes of accommodation restoration
concepts.
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Introduction

The purpose of this review is to consider the recent
literature relating to restoration of accommodation.
Accommodation is a dynamic optical change in the eye
as a consequence of a ciliary muscle contraction. Optical
factors other than accommodation, such as astigmatism,
high-order aberrations and pupil constriction, increase
the depth of field of the eye to aid near vision. While
these are beneficial for alleviating symptoms of pres-
byopia, they constitute pseudoaccommodation and not
accommodation. Multifocal intraocular lenses or multi-
focal corneal refractive procedures also alleviate the
symptoms of presbyopia by providing some functional
near vision through increased depth of field of the eye;
this, however, is also not accommodation. Published
peer-reviewed papers from 2004 and 2005 are reviewed
in the context of ongoing studies of accommodation
restoration. Much recent information is available in the
form of conference abstracts and non-peer-reviewed arti-
cles, which are not considered here. This is also not
intended to be a review of accommodative intraocular
lenses or new intraocular lens designs as this has been
addressed elsewhere [1°°,2°,3,4° 5].

Accommodation

Accommodation is defined as a dynamic optical change
in power of the eye [6,7]. The accommodative mechan-
ism as originally described by Helmholtz [8] has been
reconfirmed [9]. In the young phakic eye, contraction
of the ciliary muscle moves the apex of the ciliary
body forward and inward to release resting zonular ten-
sion around the lens equator to allow the elastic lens
capsule to mold the lens into an accommodated form
[8-10]. With accommodation in the young phakic eye,
the lens undergoes a decrease in equatorial diameter,
an increase in axial thickness, and a steepening of the
anterior and posterior surface curvatures [9,11,12°°]. The
increase in lens thickness results in a decrease in ante-
rior chamber depth and an increase in anterior segment
(anterior chamber and lens thickness) length [11,
12°°,13]. The increased lens surface curvature results
in an increase in optical power of the lens and eye that
constitutes accommodation.

Causes of presbyopia

Presbyopia has been attributed to loss of compliance of
the posterior attachment of the ciliary muscle [14,15],
growth and geometric changes in the lens [16] and hard-
ening of the lens with increasing age [17°°,18,19]. While



the root cause(s) of presbyopia may be debated, it is
generally accepted that hardening of the lens represents
the limiting factor for accommodation in the presbyopic
eye. Nonconformist theories of presbyopia suggest that
accommodation is lost owing to an age-related increase
in lens diameter and the resultant slackening of zonular
fibers [20]. In-vivo MRI measurements in living human
eyes, however, show that lens equatorial diameter does
not increase with age [21].

Restoration of accommodation

to the presbyopic eye

For accommodation to be restored to the presbyopic
eye, the physiology of accommodative structures must
remain viable. The ciliary muscle still contracts in pres-
byopic eyes even in the absence of accommodative
changes in the lens [21]. This is not surprising given
that the ciliary muscle is a striated intraocular muscle
that, like the iris sphincter muscle, receives parasympa-
thetic stimulation when the eyes converge to look at
near objects because of the neural coupling of accommo-
dation, pupil constriction and convergence (the accom-
modative triade) — even in a presbyopic eye. The elastic
capsule that molds the young lens during accommoda-
tion [10,22,23] should remain viable in a presbyopic eye
for accommodation to be restored. With increasing age,
Young’s modulus of the capsule, for low strains relevant
to accommodation, increases with age until about age 35
and thereafter remains constant, thus becoming increas-
ing effective at producing forces required to accommo-
date the lens and possibly even counteracting the pres-
byopic progression to some extent [24-26]. The
important anatomical accommodative structures appear
to remain functional and viable in the presbyopic eye

[27].

How much is enough?

The eye generally has approximately 1.5-2.0 D of pseudo-
accommodation when focused for near objects owing to
ocular aberrations and the increased depth of field
because of the pupil constriction that accompanies
accommodation [28,29]. This can be as much as 4 D in
phakic presbyopes [29]. Restoring as little as 1 D of true
accommodation to a presbyopic eye in conjunction with
the available pseudoaccommodation would benefit
many. Restoring 3—4 D of true accommodation would
be considered successful and would probably satisfy
most presbyopes [30]. Striving to restore up to 7 D of
true accommodation, while a laudable goal, may not be
necessary. To understand how much accommodation is
available or indeed if accommodation is restored in a
presbyopic eye, it is necessary to effectively stimulate
accommodation and to measure the response objec-
tively. Clinically, accommodation is often measured sub-
jectively by asking a distance corrected subject to move
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a near reading target towards the eyes until it can no
longer be held in clear, sharp focus. The distance from
the eyes to the near target expressed in diopters is used
to represent accommodative amplitude. While this is an
easy and appropriate clinical test for functional near
vision, it does not unequivocally measure the accom-
modative optical change in power of the eye because it
includes the pseudoaccommodative factors, such as
depth of field, that also aid near vision. The appropriate
way to measure accommodation is to measure the opti-
cal change in power of the eye with an objective optical
instrument such as a refractometer, autorefractor or
wavefront aberrometer as the eye views from far to near.

Scleral expansion

Scleral expansion accommodation restoration concepts
are directed at reversing a theorized age-related slacken-
ing of zonular fibers at the lens equator. Scleral expan-
sion restoration of accommodation is based on revisionist
theories of accommodation [20,31,32] that are untenable
[9], and has been shown to be ineffective [33-37]. Sur-
gical manipulations of the sclera cannot reverse lens
hardening or restore the accommodative capacity to the
lens.

Laser of chemical treatment of the lens

If lens hardening restricts accommodation in the pres-
byopic eye, theoretically, modification of the presbyopic
lens to either beak bonds or soften the lens may restore
accommodation. Lens laser modification has been pro-
posed, but is in its infancy and awaiting in-vivo proof of
principle [38,39]. Chemical modification of the lens
would probably require long-term, sustained therapeutic
compliance and so is unlikely to be viable unless short-
term treatments are developed.

Accommodation restoration with
accommodative intraocular lenses
Theoretically, accommodation could be achieved with
intraocular lenses through a forward shift of a single-
optic intraocular lens, through an increased separation
of the optics in a dual-optic intraocular lens or through
an increase in surface curvatures of a deformable lens.
Accommodative intraocular lenses of these three types
have been developed and are undergoing laboratory
and/or clinical studies. With accommodation, the young
primate lens increases its axial thickness by about
50-60 pm D' [11,12°°,40,41]. In humans, this results
in an increase in lens thickness of about 300 pum for
6 D of accommodation. This suggests that a single-
optic intraocular lens may shift forward, or the separa-
tion between the optics in a dual optic intraocular lens
may increase with an accommodative effort. A 1 mm
anterior movement may produce about 1 D of accommo-
dation in a single-optic intraocular lens [42—45] and
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2.5-3.0 D in a dual-optic intraocular lens [44,46]. The
magnitude of the accommodative effect depends on a
number of factors including the power of the optic(s)
and the position of the optic(s) within the capsular bag.
Deformable lenses that undergo a change in surface cur-
vature may produce about 4-7 D of accommodation

[47].

Developing an accommodative intraocular lens that
allows accommodation yet retains long-term refractive
stability is challenging. When placed in the capsular
bag, the intraocular lens must have the correct position,
power and configuration to achieve an emmetropic
refraction, and yet must also yield to intraocular forces
from the ciliary muscle and capsule to produce accom-
modation. The intended, inherent instability of accom-
modative intraocular lenses to allow them to move in the
eye renders them especially susceptible to tilting [48],
deconcentration or other undesirable changes over time.
"This increases the possibility of undesirable postopera-
tive refractive shifts, astigmatism, other aberrations or
surprises due to capsular bag contraction and fibrosis,
for example. Thus, while new potentially accommoda-
tive intraocular lenses have intriguing new designs,
these may present significant new challenges to achiev-
ing targeted refractions and long-term postoperative sta-
bility. If accommodation is achieved in the immediate
postoperative period, proliferation of lens epithelial
cells and postoperative fibrotic changes could result
not only in secondary cataract, but also secondary pres-
byopia over a period of months. Natural variations in the
dimensions of the eye and capsular bag also present
challenges. Accommodative intraocular lenses that rely
on a fine balance of forces between the intraocular lens
and the physiological accommodative structures are sus-
ceptible to variability of postoperative refraction and
accommodative amplitudes dependent on how well the
intraocular lens fits in the capsular bag.

For accommodative intraocular lenses that rely on the
integrity and elasticity of the capsule to perform their
accommodative function, YAG laser capsulotomy may
be contraindicated. A soft polymer injected into the cap-
sular bag would probably bulge or leak out of a posterior
capsulotomy with potentially devastating visual conse-
quences. The clinical performance, however, of a sin-
gle-optic accommodative intraocular lens based on the
forward-shift principle appears not to be affected by
YAG capsulotomy, at least as assessed with subjective
accommodation testing [49]. Accommodative intraocular
lenses that do not rely on elasticity of the capsule or are
designed to take advantage of postoperative fibrosis in
the capsule [1°°,50,51] may circumvent a secondary loss
of accommodation. Stability of refraction, anterior cham-
ber depth and subjectively measured accommodative

amplitude up to 1 year has been reported with such an
intraocular lens [52].

Testing accommodative intraocular lens
designs

Other than 7z vive in humans, relatively few options are
available for testing accommodation restoration
concepts. Surgical techniques have been evaluated in
rabbit, monkey and enucleated pig eyes [53-62]. Post-
operative capsular opacification of accommodative
intraocular lenses has been studied in rabbits and mon-
keys [55,63,64]. Mechanical stretching of human donor
eyes, used previously to study accommodation and pres-
byopia in phakic human donor eyes [18], has been used
to investigate accommodation restoration with polymer
refilling techniques [27] or accommodative intraocular
lenses in an artificial capsule [65°].

Limited options for animal testing are available. Rabbits
and dogs do not accommodate. Cats do to a limited
extent [66], but by translation of the lens [67-69] as
with raccoons [70]. Birds accommodate by changes in
corneal curvature and the iris sphincter muscle and cili-
ary body squeezing the lens [71,72]. Monkeys are the
only animal species with an accommodative mechanism
similar to humans [9]. While polymer refilling techni-
ques can be tested /z sitw in monkey eyes [58,64,73,
74], it would be of limited value to test other intraocular
lens designs in monkey eyes. Intraocular lenses would
have to be specifically designed for the relatively small
monkey eye, and material thicknesses and mechanical
properties would have to be scaled down, thus making
it unclear how applicable the results would be to human
intraocular lenses.

Early prototype testing in living human evyes is challen-
ging because of the limited testing that can be done and
the time commitment and level of cooperation required
from the patients for this testing. If an intraocular lens
fails to accommodate in a human eye, it may not be
possible to understand why. It may be owing to poor
sizing of the intraocular lens for the capsular bag, post-
operative fibrotic changes in the capsule, an inability of
the subject to elicit accommodation or an ineffective
intraocular lens design. An inability to differentiate
between these factors makes it difficult to improve the
performance of the accommodative intraocular lenses.

Evaluation of accommodation restoration
concepts

Providing functional distance and near vision to pres-
byopes through any means possible is of value if it is
safe and effective. The myriad of approaches available
or under investigation attest to the clinical need. Many
approaches rely on multiple factors to achieve functional



distance and near vision. For example, multifocal or
diffractive intraocular lenses rely on the optics of the
intraocular lens in conjunction with the dynamic pupil
changes to provide functional near and distance vision.
Functional near vision in the phakic eye is also achieved
through a combination of active, dynamic accommoda-
tion and static pseudoaccommodative influences as is
demonstrated by the difference between subjectively
and objectively measured accommodative amplitudes
[28,29]. There is little debate that testing of accommo-
dation restoration concepts can and should include stan-
dardized, subjective near-vision tests such as distance-
corrected near-visual acuities. These tests include the
many factors that may improve near vision. This is
important clinically to understand the benefits for the
patients. The use of subjective tests alone, however,
permits no definitive conclusions regarding the ability
of accommodation restoration procedures to restore
accommodation.

Several recent studies of accommodative intraocular
lenses only utilize subjective outcome measures [49,
75°,76,77]. Comparable near-vision performance was
reported with multifocal or accommodative intraocular
lenses that was better than that achieved with standard,
control monofocal intraocular lenses [75°°,77]. Another
study found better near-visual performance with a
multifocal than an accommodative intraocular lens [76].
Studies using subjective tests such as distance-corrected
near-visual acuity and dynamic retinoscopy, however,
provide no evidence of whether active accommodation
is present with the accommodative intraocular lenses.
Only the use of objective measures can settle the debate
over whether or not accommodation is restored with
accommodation restoration procedures including scleral
expansion [33-37] or accommodative intraocular lenses
[78°,79,80].

Pharmacological stimulation

of accommodation

Accommodation can be stimulated by topical application
of 2-6% pilocarpine. This produces an involuntary
accommodative response that does not rely on the
subject’s ability to respond to visual, blur or proximal
cues. The time course of drug stimulation, however, is
slow and it produces a rapid and strong pupil constric-
tion that makes objective accommodative refraction
measurements difficult. The amplitude of the accom-
modative response varies with iris color owing to the
extent to which drugs are absorbed by the ocular pig-
ment epithelium [28,29]. The pharmacological stimu-
lated accommodative response results in a net anterior
shift of the lens in the phakic eye that does not normally
occur with natural accommodation [12°°,81]. Pilocarpine
stimulated accommodation produces a forward intra-
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ocular lens movement that does not occur with a volun-
tary accommodative effort [82°]. Pharmacological stimu-
lation of accommodation may therefore be inappropriate
for evaluating the clinical performance of accommoda-
tive intraocular lenses that rely on a forward-shift prin-
ciple. It may be desirable or appropriate in some cases,
however, to use pharmacological stimulation to evaluate
the possibility or presence of an axial shift in an intrao-
cular lens that is designed to perform that way.

A number of studies have stimulated accommodation
pharmacologically in pseudophakic eyes and measured
intraocular lens movement with slit-beam photography,
scanning slit topography, ultrasound biomicroscopy or
partial coherence interferometry [65°,78°,82°,83]. While
these studies are to be lauded for the use of objective
measurements of intraocular lens movement, the use of
pilocarpine to stimulate accommodation leaves doubt as
to whether the movements observed are due to accom-
modation or due to secondary effects of the pilocarpine.

Accommodative movements of an accommodative
intraocular lens have also been assessed with ultrasound
biomicroscopy. Anterior chamber depth was measured,
first while subjects fixated a near target at 30 cm with
the contralateral eye and then subsequently after the
measured eye was cyclopleged with 1% cyclopentolate
[84°]. A 0.33 mm decrease in anterior chamber depth
was reported that was attributed to accommodation.
Another study using slit-beam photography attributed
an increase in anterior chamber depth of 0.43 mm from
the unaccommodated to the cyclopleged state to the
accommodative movement of the intraocular lens [75°].
These movements may not be due to anterior move-
ment with accommodation, however, but rather poster-
ior movement with cycloplegia, as has been demon-
strated to occur in the normal phakic eye [12°°].
Measuring intraocular lens movements with cycloplegia
is inappropriate to assess how an intraocular lens may
move with accommodation.

Objective measurement of pseudophakic
accommodation

Objective measurements during volitional accommoda-
tion with forward-shift accommodative intraocular lenses
have been reported. One study (evidently the same data
reported twice) measured a mean of 1 D (range 0.75-
2.13 D) of accommodation with an infrared refract-
ometer [42,85]. Forward movement of an intraocular
lens has been demonstrated in one patient with Purkinje
image analysis [86]. The accommodative amplitude was
measured with an objective infrared autorefractor in 14—
66% of 22 subjects followed over 1 year with a peak
mean of 0.5 D of accommodation at the 3-month inter-
val [87°°].
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Conclusion

There is incontrovertible, objective evidence that
accommodation can be restored in the pseudophakic
eye. Such data are sparse, however, and success in
restoring accommodation is limited and variable. The
objective clinical data available to date include only stu-
dies on forward-shift-principle intraocular lenses. The
accommodative amplitude theoretically achievable and
clinically measured with such intraocular lenses is
small. The current status of accommodation restoration
is disappointing because of the lack of sound clinical
studies that have used appropriate objective methods
to measure accommodation (either the optical response
or the physical movement) with voluntary accommoda-
tion. Subjective clinical outcomes are important. If
restoration of accommodation is to evolve from theory
to practice, however, objective measurements are essen-
tial. Objective accommodation measurement has, for a
long time, been routine practice in accommodation stu-
dies in phakic eyes. Many objective instruments exist
that are routinely used on pseudophakic eyes that are
appropriate for objective accommodation measurement.
These instruments can and should be used for objective
accommodation measurements in pseudophakic eyes to
understand the capabilities of the instruments and to
evaluate the efficacy of the intraocular lenses. The cur-
rent status of this field is exciting for what the future
may hold. Preliminary results suggest that accommoda-
tion can be restored, and new intraocular lens designs
may lead to improved performance and clinical out-
comes in the future.
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