Dear Editor:

Dr. Roy presents three case summaries in which presbyopic patients have experienced improved near visual acuity after scleral expansion surgery. In addition, he notes an improvement in accommodative amplitude in each patient. Unfortunately, he does not specify the method used to measure accommodative amplitude. If subjective push-up tests were used (as proponents of the surgery generally have done), then his point remains unproven. Reasons for a mismatch between subjective push-up data and objectively measured accommodative amplitude are well known and well documented in the literature. The simplest, and perhaps most relevant, reason is that near visual acuity in presbyopic patients is often improved with multifocal intraocular or contact lenses, yet clearly, this is not accommodation. Restating from my 1999 *Ophthalmology* article (*Ophthalmology* 1999;106:873–7), the efficacy and mechanism of this controversial surgery deserve rigorous and unbiased investigation before the technique is performed on the general public. I am not certain why Dr. Roy’s three patients see better at near after scleral expansion surgery. I am certain that the three patients that I had the opportunity to measure with my objective optometer had full presbyopia before and after scleral expansion surgery. I invite Dr. Roy and any of his patients to visit me at Texas Tech University (or anyone else with an objective optometer) to directly and accurately measure the postoperative accommodative amplitude. Curiously, I have not been taken up on this often-stated standing offer for more than three years. Finally, if this procedure is eventually shown to improve near visual acuity reliably and safely, I suspect that preoperative and postoperative Hartmann-Shack aberrometry will provide objective data on the real mechanism underlying the surgery. If those performing the surgery were as enthusiastic about doing objective tests as they are about the surgery, answers to these questions would already be available. To date, the only published or reported objective postoperative measures show that scleral expansion surgery does not restore accommodation. Moreover, I do not know of any Hartmann-Shack aberrometry data on these patients.

STEVEN MATHEWS, OD PhD
Lubbock, Texas

Dear Editor:

Dr. Roy writes that three ophthalmologists have had scleral expansion surgery (SES) and experienced improved near vision. He suggests that in light of this, prior published studies of the accommodative mechanism and objective accommodation measurements in SES patients need to be reexamined.

Accommodation is, by definition, a dynamic, dioptic change in power of the eye. It occurs through altered lens geometry consequent to ciliary muscle contraction. The near-vision push-up test that is unfortunately routinely used in these cases does not necessarily measure accommodation. Improvement of near vision with spectacle lenses or multifocal intraocular lenses, for example, is not accommodation. Dr. Roy has provided no indication that accommo-

F. HAMPTON ROY, MD
Little Rock, Arkansas
dation has been measured objectively, and therefore no indication that accommodation occurs.

We routinely use topical pilocarpine to induce accommodation in human subjects. The accommodative response is measured with a Hartinger Coincidence refractometer requiring no response from the patient. This method and the involuntary accommodative response it produces is well documented.1 This and the technique used by Mathews2 are appropriate methods to determine whether accommodation occurs. We have previously invited Dr. Roy and others performing this procedure to visit our laboratories and bring their patients to have these objective tests done or to allow us to bring our techniques to their patients in their offices. These offers have not been accepted, but still stand.

In addition to objective accommodation measurements, preoperative and postoperative wavefront aberration measurements should be performed to assess whether this procedure may, for example, introduce ocular aberrations or multifocality. If Dr. Roy and others performing this procedure are unable to do these measurements, others certainly will if patients are made available.

In summary, improved near vision does not prove the presence of accommodation and says nothing about the accommodative mechanism. Objective, dynamic optometers and objective refractometers have long been available and are reported extensively in the literature. Pilocarpine, which can be used to stimulate accommodation, has been used clinically for a century and a quarter. It is the new claims that need careful evaluation, not the old. The tools are there, but the will to use them is less apparent.

ADRIAN GLASSER, PHD
Houston, Texas
PAUL L. KAUFMAN, MD
Madison, Wisconsin

References

Subretinal Fibrosis in Vogt-Koyanagi Harada Syndrome

Dear Editor:

In the report by Dr. Kuo and colleagues,1 where they observed subretinal fibrosis in a sizable proportion (8%) of patients with Vogt-Koyanagi-Harada (VKH) syndrome, their study included patients examined over a period of 20 years in two tertiary referral centers. We have previously published similar findings.2 (Cheung MK, Walton RC, Chan CC, et al. Invest Ophthalmol Vis Sci 1995;36:S782). In our studies, 40% of the 75 patients with VKH had subretinal fibrosis develop.2 Our higher reported incidence of subretinal fibrosis may be related to the increased severity and chronicity of disease in our patient population. We also agree with the authors that problems distinguishing between choroidal neovascular membrane and subretinal fibrosis, particularly when it is located in the macula region, make it difficult to clearly explain the pathogenesis of this disease. The peripapillary lesions and lesions nasal to the optic disc are easier to define as subretinal fibrosis, because these locations are not typical for choroidal neovascularization. Finally, although visual acuity can be severely affected when subretinal fibrosis extended into the fovea, we did not find statistically significant decreases in visual acuity as observed by Kuo et al.1 This could be due to differences in our definition of zone 1 (macular) lesions.

SOMSAK LERTSUMITKUL, FRACO, MPH
Liverpool, Australia
SCOTT M. WHITCUP, MD
Irvine, California
CHI-CHAO CHAN, MD
ROBERT B. NUSSENBLATT, MD
Bethesda, Maryland

References

Erratum

The authors of the article, “Patterns of Open-angle Glaucoma in the Barbados Family Study” (Ophthalmology 2001; 108:1015–22) wish to amend the precis that appeared in the Table of Contents: Among 1056 family members of black probands with open-angle glaucoma (OAG), 67 (20%) of the 338 siblings were similarly affected. Besides age and higher intraocular pressure, risk factors for OAG in siblings were myopia and lower diastolic blood pressure—IOP differences.